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LATERAL VELOCITY VARIATIONS AND WATER 

CONTENT ESTIMATED FROM MULTI-OFFSET GROUND 

PENETRATING RADAR 

Introduction 

Ground penetrating radar (GPR) is the recording of high frequency electromagnetic waves 

that have reflected from subsurface contrasts in dielectric constant. In low-loss media, ground 

penetrating radar is capable of producing high resolution images of the shallow subsurface, 

compared to other surface electric or seismic geophysical techniques. Most commonly, GPR 

data is collected with a single source-to-receiver offset, usually a minimum offset. In the 

early development of GPR, multi-offset common midpoint (CMP) sounding was borrowed 

from reflection seismology as an effective technique for determining glacial ice velocities 

(Gudmandsen, 1971). As the use of GPR expanded to rock and soil surveys, multi-offset 

radar sounding has continued to be used primarily for velocity sounding at one or just a few 

points along a survey line. The advantages of determining velocity with this method are 

that it requires no prior knowledge of the subsurface, is not intrusive, uses the radar data 

acquisition system only and can determine the velocity anywhere within the survey. The 

disadvantage is that acquiring multi-offset data with current GPR systems is slow (compared 

to zero-offset surveys), or impossible, for systems with fixed source-receiver offset. 

Recent case studies have shown that when an entire GPR survey is acquired with the 



CMP geometry, multi-trace reflection seismic processing techniques can be used to improve 

the subsurface radar images (Fisher et al, 1992; Gerlitz et al, 1993). When the data 

are collected in this configuration, normal moveout velocity analysis is used to derive a 

continuous 2-D radar stacking velocity field. In general, lateral radar velocity variation has 

been considered to be small within the spatial range of most surveys. In this study, we show 

that, in fact, lateral variation in radar velocity can be significant and further, that with 

increasing lateral velocity description comes improvement in the results of multi-offset radar 

processing. 

In general, ground penetrating radar velocity decreases rapidly with depth (Davis and 

Annan, 1989). This is primarily a result of increasing water content. Topp et al. (1980), de- 

rived an empirical relationship between radar propagation velocity and water content. Using 

this relationship we can estimate water content from the interval velocities calculated from 

normal moveout velocities. This interpretation increases the potential uses of radar profiling 

in ground water studies and contaminant spill monitoring. Radar interval velocity can be 

used to estimate water content when the subsurface is sufficiently resistive to be treated as a 

low-loss media. This is a reasonable assumption where radar signals penetrate the subsurface 

to depths of meters or tens of meters. In partially saturated soils, water content may be 

interpreted as an indicator of saturation. In fully saturated soils, variations in water content 

can be interpreted as variations in water filled porosity. The improvement to the continuity 

and depth-of-penetration of the radar image combined with such interpretations of the ve- 



locity should encourage the development of GPR systems capable of acquiring multi-offset 

common midpoint data efficiently for standard surveying. 

Multi-offset Data 

We obtained a multi-offset GPR survey from Sensors & Software, Inc., that was acquired 

at the Chalk River research area, operated by Atomic Energy of Canada, Limited. The 

data were acquired in a cooperation of Sensors k Software Inc., the Atomic Energy of 

Canada, Ltd. and the UT-Dallas Geophysical Consortium. The data were collected with 

multiple source antenna to receiver antenna offsets, such that after re-arrangement, 1800 

CMP's spaced every 0.25 m were defined. The data were acquired using a pulseEKKO IV 

digital radar system with 100 MHz antennas. A detailed description of acquisition geometry 

and data recording parameters can be found in Fisher et al. (1992). For these data, each 

CMP gather has, on average, ten traces with offsets ranging from 0.5 m to 20.0 m. The 

standard GPR data set would have only a single offset trace at each survey station, usually 

a minimum offset. In Figure 1, the minimum offset trace profile from the Chalk River data 

set is displayed. This shows the data as it would be collected in a single offset GPR survey 

at this site. The subsurface at the site is described as bedrock covered by glacial till and 

fluvial sand deposits (Davis and Annan, 1989; Fisher et al, 1992). In this profile we see 

a strong channel shaped reflector that appears to be the depth-of-penetration limit. Also, 

there is a clear decrease in reflection continuity between about 100-400 nanoseconds from 
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Figure 1: Minimum offset profile extracted from multi-offset GPR data at Chalk River. 



CMP 900 to CMP 1800. Improvements to the radar image in these areas, in particular, are 

observed in the final CMP processed data profiles. 

Figure 2a shows a number of CMP gathers with traces arranged in offset order from 0.5 m 

to 20.0 m within each CMP. Some of the approximately hyperbolic arrivals from reflections 

are clearly distinguished, but the signal-to-noise is low in this raw data. Pre-processing 

steps were applied to the data to prepare it for velocity analysis and stacking. The data 

were bandpass filtered, a top mute (in shot gather mode) was applied to remove the direct 

arrivals, and time dependent scaling was used to partially correct for geometric spreading 

loss. A filter in the frequency domain was applied to remove some spatial aliasing effects. 

AGC (automatic gain control) scaling is used for display. Figure 2b shows the same CMP 

gathers after these processes have been applied. These filtered data are used in the normal 

moveout velocity analysis. 

Normal Moveout Velocity Estimation 

Since the data in this survey were all collected with the CMP geometry, normal moveout 

(NMO) velocity analysis can be applied at any or all of the CMP's to define the subsurface 

velocity. How many velocity analyses are required depends on how strongly the radar velocity 

varies laterally. There is no rule or formula for determining an optimum number of velocity 

analyses for processing a CMP data set, so this parameter must be established by testing 

the data itself.  In this example, we show how increasing the number of velocity analyses 
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Figure 2a: Radar CMP gathers in offset order before pre-processing. Offsets vary from 0.5 
m to 20.0 m within each CMP. 
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Figure 2b:  Radar CMP gathers after pre-processing.   Offsets vary from 0.5 m to 20.0 m 
within each CMP. 



affects the final CMP stacked image. 

There are a variety of schemes used in NMO velocity analysis (Yilmaz, 1987). We have 

used a semblance amplitude approach where the data in the CMP's are normal moveout 

corrected and stacked using a range of trial velocities. The amplitudes versus time over 

the whole range are then contoured and displayed as a velocity spectrum. The peaks of 

the amplitude mapping are chosen to define the 1-D velocity function at each CMP being 

analyzed. After a number of velocity functions have been defined, a 2-D velocity profile 

is created by interpolation. For a statistical method, like semblance mapping, the more 

traces there are in any individual CMP, and the larger the offset range (within the small 

spread approximation), the better the resolution in the velocity spectrum. In practice, the 

vertical resolution of NMO velocity analysis has limits such that only the highest amplitude 

velocity spectra peaks are picked for the traveltime versus velocity function. Therefore, the 

NMO velocity function will usually have less velocity layers defined than there are reflections 

observed in the data. 

When the number of traces per gather is small and somewhat noisy, we expect the 

velocity spectra to have a relatively poor signal-to-noise ratio. For the Chalk River data we 

reduce the noise in the velocity spectra by combining, and sorting by offset, the traces from 

twenty CMP's centered around each CMP chosen for velocity analysis. A typical velocity 

spectrum, for a single CMP (no combination) is shown in Figure 3a. When the spectrum of 

the combined 20 CMP's is found, as shown in Figure 3b, the velocity peaks are much better 
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Figure 3: (a) Velocity spectrum of CMP 755. (b) Velocity spectrum of the combination of 
20 CMP's centered on CMP 755. 



resolved and NMO velocity can be picked with more confidence. To an extent, resolution 

in the spectra seems to improve with increasing traveltime. This is due in part to the fact 

that for near surface reflections, the further offset traces are muted and do not contribute 

to the analysis, so there are less data in the statistical analysis. Secondly, for a constant 

test velocity interval, changes in stacking occur more slowly as velocity increases, leading, 

in radar data, to less well resolved peaks in the spectra of near surface reflections. Overall 

width of the velocity spectra peaks in Figure 3b indicate that resolution of the stacking 

velocity is on the order of +/ — 0.01 mjns. 

Velocity analyses were performed at regular intervals along the profile. Figure 4 shows the 

interpolated NMO velocity fields as the number of velocity analyses is increased. Figure 4a 

is the simple flat layered profile that results when only one CMP is analyzed. Velocity varies 

from about .125 m/ns near the surface to about .06 m/ns for deep reflectors. The deepest 

reflectors for which velocity is estimated is at about 750 ns in the central portion of the data. 

Figure 4b shows the 2-D velocity profile when velocity analyses at four CMP's are included. 

We see that there is significant lateral variation which approximately mirrors the sediment 

wedge in the reflection data. Figure 4c includes velocity analyses at nine CMP's, Figure 4d 

at eighteen CMP's and Figure 4e at 35 CMP's. As the number of velocity analyses increase 

the velocity field becomes more complicated and suggests that some subsurface properties 

not directly related to layering are affecting the velocity structure. 

10 
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Figure 4: 2-D normal moveout velocity profile in traveltime after analysis at a) 1 CMP, b) 
4 CMP's, c) 9 CMP's, d) 18 CMP's, and e) 35 CMP's. 
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Stacked Radar Profiles 

Normal moveout corrections calculated from the NMO velocity field remove the offset de- 

pendence of the reflection traveltimes such that the data can be treated as zero offset traces. 

After the correction is made, the traces within each CMP are stacked to produce a single 

CMP trace. If the NMO correction is done with the correct velocity function, the stacked 

traces have an improved signal-to-noise ratio. 

The NMO correction is based on the assumption that the subsurface sampled by each 

CMP can be adequately modeled as a sequence of horizontal layers with uniform interval 

velocity. Steeply dipping reflectors and strong velocity gradients test the applicability of 

the normal moveout and stack technique, but in general the method is sufficiently robust to 

improve data quality under most conditions. If lateral velocity variation is small enough, a 

single NMO velocity function can be used to calculate the moveout correction at all CMP's. 

However, where lateral velocity variation is significant, a variable NMO velocity field defined 

by functions at a number of CMP's must be applied to obtain the best results. In principle, 

an NMO velocity defined individually by velocity analysis for every CMP should yield the 

most accurate result. However, a spatial limit to lateral variation in NMO velocity is usually 

reached at some multiple CMP spacing. 

NMO corrections were computed for the Chalk River data using each of the velocity 

fields in Figure 4. In Figure 5a we show the stacked profile when NMO is defined by a single 

velocity analysis (Figure 4a).   Figure 5b is the stacked profile result when all thirty-five 

12 
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Figure 5a:  CMP stacked radar reflection profile using velocity profile from 1 CMP, corre- 
sponding to Figure 4a. 
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Figure 5b: CMP stacked radar reflection profile using velocity profile from 35 CMP's, cor- 
responding to Figure 4e. 
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velocity analyses (Figure 4e) are used. First we compare these to the standard (no stack) 

profile shown in Figure 1. The stacked data profiles show a strong reduction in background 

noise as compared to single offset. Also, some deeper reflections, below the apparent channel 

bottom reflection, have been greatly enhanced, in particular, the reflector at about 600 ns 

from CMP 250 to CMP 1000. Note that when a velocity field is applied the exact traveltime 

to reflectors changes slightly. This is a consequence of the normal moveout correction which 

is shifting arrival times as a function of the particular velocity field. Comparing the single 

velocity stack, Figure 5a, to the multiple velocity analyses stack, Figure 5b, we observe 

that some deeper reflections occur down to 750 ns but the more clear improvement is in 

continuity of reflectors throughout the section. Overall, stacking with even just one velocity 

control point provides the major increase in the depth-of-penetration over no stack. With 

increasing detail in the velocity field there is some increase in the depth-of-penetration but 

primarily improves reflector continuity and time structure. The fact that the majority of 

depth-of-penetration increase occurs with the stack from even a single velocity analyses as 

compared to no stack, suggests that it is the multi-offset nature of the stack, in particular 

the far offsets, that provide the signal from the deeper reflectors. 

As previously noted, the data between about 200 to 400 ns to the right of CMP 900 

shows very few coherent reflectors in the standard GPR survey shown in Figure 1. In fact 

the left half of the profile is quite different than the right half of the profile. With the NMO 

correction and stack, the region on the right changes dramatically, with many reflectors 

15 



emerging from the stack. When only one velocity is applied, Figure 5a, this area of the data 

is still poorly resolved. However, when all velocity functions are included in the velocity 

description, the stack has improved continuity of a number of reflections from the left side 

of the data into the right side. Also, note that the deepest reflection on the right side, now 

appears to consist of a series of step-like events which may be interpreted as due to stream 

erosional features. Although not shown here, only small differences between the stack based 

on eighteen velocity analyses and thirty-six were observed. This implies that lateral velocity 

resolution for these data is between 50 and 100 CMP's (12.5 to 25 meters). 

Radar Propagation Approximations 

Radar propagation is fundamentally limited by the conductivity of the subsurface medium. 

Only in low-loss media can radar signals penetrate deep enough to provide a useful subsurface 

image. For radar, low-loss media has been described as soil or rock with conductivity less than 

100 mS/rn (Davis and Annan, 1989). Useful approximations for describing the propagation 

of radar signals can be found by considering the time harmonic solution of the equation 

„2- SE S2E 

derived from Maxwell's equation for the case of a homogeneous isotropic medium. E is 

the electric field intensity and the constants of proportionality, e, \i and a are the electric 

permittivity, magnetic permeability and conductivity of the medium. The first term on the 

16 



right side of the wave Eq (1) represents conduction of charge due to the applied electric field. 

The second term describes the displacement of charge due to the field. 

A solution to Eq (1) of the form 

E(z,t) = E0e-^eiut (2) 

yields the dispersion relation 

k2 = ificru) + fieu}2. (3) 

The wavenumber, k, is complex and can be written as 

k = a + iß (4) 

where the attenuation constant 

a=|^(vT7ta^-l) 

and phase constant 

(5) 

(6) ß=^J (Vl + tan^ + l) 

are both real. The parameters, c and Ke are the electromagnetic velocity in free space and 

the real part of the dielectric constant of the medium. Relative susceptibility, ^, has been 

eliminated since it is considered to be unity for most near surface earth materials (Telford 

et al, 1976). The solution to the equation can then be written as 

E{z,t) = E0e-
aze-i(-wt-ßz) (7) 

17 



which is the expression for a damped plane wave propagating with phase velocity 

~* (8) 

For a plane wave propagating with the angular frequency u>, the ratio of conduction 

current density to displacement current density is the loss tangent 

tan S = —. (9) 

In materials that are good conductors, displacement currents are negligible compared 

to conduction currents, and Eq (1) reduces to a diffusion equation, i.e., the fields do not 

propagate as electromagnetic waves. For materials with low conductivity, and when the 

frequency of the oscillating electric field is high enough, the displacement current dominates 

over the conduction current and electromagnetic waves will propagate (Stratton, 1941). For 

GPR systems, which by definition are high frequency, the loss tangent is very small and the 

diffusion term can be neglected. In this case, where tan Ä<1, the phase constant reduces 

to 

ß*-y/Te (10) 
C 

such that 

and a reduces such that a depth of penetration, dp, can be approximated by 

1 /K~ 
<L = - « 5 x 10-3 *-l     meters (12) 

a a 

18 



Since common soil mixtures have dielectric constants less than fresh water («e = 80), only 

very low conductivity materials (a < 100 mS/m) will allow propagation to useful depths. 

For example if ne = 9 then a depth of penetration of one meter requires that a = 15 mS/m. 

This discussion has centered on the time harmonic solution to the wave equation and 

as such has not considered that the material properties are also frequency dependent and 

therefore should be treated as complex numbers. However, Davis and Annan (1989) and 

others have shown that in the frequency range of ground penetrating radar, 10-1000 MHz, 

low-loss media are essentially non-dispersive. In our interpretation we treat the dielectric 

constant as real and related to the propagation velocity by the simple expression found in 

Eq (11). In making this approximation we recognize that frequency dependence as well as 

many other factors such as scattering loss, source/receiver antenna power and transmission 

characteristics, and ground coupling (Daniels, 1989) are not being accounted for. However, 

our assumption is that these factors change much more slowly than dielectric constant if 

reflections are observed in the data. 

Interval velocity and water content 

To interpret the NMO velocity field derived from the multi-offset data, it is necessary to 

calculate interval velocities and find the relationship of radar propagation velocity to other 

geoelectric properties. Interval velocity u;,„ was calculated using the Dix formula (Dix, 1955). 

19 



Vi.n = 
VNMO,ntn * VNMO,n-l^n-l ,      . 

"n" \        u=tZ (13) 

This calculation was made difficult by the fact that radar velocity decreases with increas- 

ing traveltime. The Dix formulation does not preclude the case of velocity decreasing with 

traveltime but we found that with decreasing velocity the numerator inside the square root 

of (13) can be negative if the traveltime interval is small or the NMO velocity change is 

large. Where this situation was encountered we used the average velocity of laterally adja- 

cent intervals. When the Dix formula is applied to calculated exact NMO traveltimes and 

moveout velocities for a radar velocity model, this problem is not observed. This implies 

that the Dix inversion when applied to radar data is very sensitive to noise in the velocity 

analysis. In consideration of this, all properties calculated from the interval velocities were 

subjected to strong smoothing. For example, time-to-depth conversion for the profile was 

taken to be the least squares linear fit to the data from all of the velocity analyses. 

The final step in our interpretation scheme is to relate the calculated radar interval 

velocities to water content. Interval velocity derived from reflection moveout curves is the 

group velocity, but in non-dispersive media, group velocity is equal to phase velocity and we 

can use the approximation (11) to convert velocity to dielectric constant. Topp et al. (1981) 

derived an empirical relationship between measured water content in laboratory samples and 

dielectric constant. Their empirical equation for estimating volumetric water content 6V is 

6V = -5.3 x 1(T2 + 2.92 x l(T2Ke - 5.5 x 10_4/c* + 4.3 x 10-6^ (14) 

20 



This equation is most appropriate to GPR since it is based on measurements on soil 

samples of varying water content in the frequency range of ground penetrating radar systems 

with a laboratory setup equivalent to a pulsed radar system. 

We also considered two other functions to estimate water content. The CRIM (complex 

refractive index method) equation is used for interpretation of electromagnetic propagation 

logs. It is also an empirically derived mixing law relating dielectric constant to water filled 

porosity,  <f>, 
y/it 

~~ V Km 

9CRIM -  -7= — \iö) 

0-tan2 § 

where K is the real part of the dielectric constant of the water (KW) and rock matrix (KOT) 

mixture (Schlumberger, 1991). To apply this equation to GPR data we assume that tan S <C 

1 for all components of the mixture so that the equation reduces to 

<t>CRIM «     JL    ^^L (16) 

Another mixing formulation is discussed by Sen et al. (1981) for estimating water sat- 

urated porosity. This is the two-phase Hanai-Bruggeman equation which in the frequency 

range of radar can be approximated by 

<I>H-B ^ (^-f i-^1^-) (17) 
\  K /        \ Kyj       form ' 

where m in the exponent is the geometric factor from Archie's law (Samstag, 1992). This 

factor is most commonly taken to be m = 2 (Sheriff, 1991) but in Jackson et al. (1978) it 
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is empirically shown to range in marine sands from m = 1.52 for shaly sand to m = 1.9 for 

platey shell fragments. In saturated soils the porosity calculated from (16) or (17) is equal to 

the fractional water content of Eq (14). Figure 6 shows a comparison of the the water content 

versus dielectric constant calculated with these equations. For equations (16) and (17) we 

used KW = 80 and /cm = 4.5 to approximate a fresh water saturated sand. The geometric 

factor in Eq (17) was taken to be m = 2 for simplicity since we are measuring quantities 

on a gross scale compared to the micro-geometry reflected in the m factor. From the plot 

we can see that any of these relationships would yield similar results in converting dielectric 

constant to water content but the point of this calculation is to show that the Topp Eq (14) 

is in good agreement with other estimation techniques. If the GPR data was collected at 

multiple frequencies it would be more appropriate to use the Hanai-Bruggeman equation 

which, in its complete form, is frequency dependent. It should also be noted that the actual 

measured property, interval velocity, changes more slowly with water content as velocity 

decreases. Since radar velocity in general decreases with depth, decreasing sensitivity of the 

inversion to variations in water content is expected to occur at greater depths. 

We used the Topp equation to make the estimate of water content shown in Figure 7 

from the interval velocity. In order to compare this plot to the reflection profiles, the water 

content is plotted linear in time, but with the approximate depths indicated on the right. 

The water content estimates were binned into 20 ns intervals and then smoothed three 

times with a nine point averaging window. The result shows clearly a zone of increasingly 
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Figure 6: Relating dielectric constant to water content in low-loss media. Comparison of 
Topp et al. (1981) empirical relation to the CRIM (Schlumberger, 1991) and Hanai- 
Bruggeman (Sen et al, 1981) equations. 
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shallow high water content from left to right along the profile. This can be interpreted as 

an indication of a rising water table. Since this region of high water content cuts across the 

detailed reflection structure, it implies that water filled porosity and permeability pathways 

are not constrained to apparent stratigraphic structure. Lateral variations in water content 

will occur within depositional units as sand and clay ratios and grain size vary. Since water 

distributed across stratigraphic units is not likely to be connate water, it is reasonable to 

conclude that the zones of high water content are also the zones of highest permeability. 

There is also some indication that there are areas of decreasing water content at depth 

which can be interpreted to be a result of differences in soil porosity determined by soil type 

and compaction. 

Conclusion 

Ground penetrating radar surveys collected with the CMP multi-offset geometry yield im- 

proved subsurface images over single offset surveys. We have shown that the CMP profile 

is itself improved as the number of velocity analyses is increased. This leads to the con- 

clusion that lateral variation in radar propagation velocity can be significant even over the 

limited range of a typical GPR survey. The CMP stacking process yields improved depth- 

of-penetration over a single offset survey while detailed velocity analysis yields improvement 

to continuity of reflectors throughout the stacked profile. 

In this study we have also attempted to connect the practical measurement of radar 
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velocity from the multi-offset data with the theoretical and laboratory relationships between 

water content and dielectric constant. We have shown a practical approach to estimating 

water content from these velocities based on the assumption that media conducive to radar 

propagation is essentially non-dispersive. The results of applying this method to the Chalk 

River data illustrates the method but due to the lack of comparative data, in particular field 

measured water content or dielectric constant, we cannot establish how accurate these results 

are. It should be considered for such approximations that the accuracy is no better than that 

of the velocity which is estimated to be within 10-20% of the average. Some improvement 

to this could be made by increasing the number of source to receiver offsets recorded for 

each CMP%. We also suggest that a test of this interpretation method should be done by 

measuring subsurface water content in an area while acquiring a multi-offset radar survey. 
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